翻訳と辞書
Words near each other
・ Krameria
・ Krameria bicolor
・ Krameria cistoidea
・ Krameria erecta
・ Krameria ixine
・ Krameria lappacea
・ Kramers (crater)
・ Kramers Ergot
・ Kramers F.C.
・ Kramers theorem
・ Kramers' law
・ Kramers' law (disambiguation)
・ Kramers' opacity law
・ Kramersmolen, Goutum
・ Kramerspitz
Kramers–Heisenberg formula
・ Kramers–Kronig relations
・ Kramers–Wannier duality
・ Kramfors
・ Kramfors Municipality
・ Kramfors-Alliansen
・ Kramfors-Alliansen Fotboll
・ Kramgasse
・ Kramgoa låtar 10
・ Kramgoa låtar 11
・ Kramgoa låtar 12
・ Kramgoa låtar 13
・ Kramgoa låtar 14
・ Kramgoa låtar 15
・ Kramgoa låtar 16


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kramers–Heisenberg formula : ウィキペディア英語版
Kramers–Heisenberg formula
The Kramers-Heisenberg dispersion formula is an expression for the cross section for scattering of a photon by an atomic electron. It was derived before the advent of quantum mechanics by Hendrik Kramers and Werner Heisenberg in 1925, based on the correspondence principle applied to the classical dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927.
The Kramers–Heisenberg formula was an important achievement when it was published, explaining the notion of "negative absorption" (stimulated emission), the Thomas-Reiche-Kuhn sum rule, and inelastic scattering - where the energy of the scattered photon may be larger or smaller than that of the incident photon - thereby anticipating the Raman effect.
== Equation ==
The Kramers-Heisenberg (KH) formula for second order processes is 〔〔J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley (1967), page
56.〕
\frac=\frac\sum_\left | \sum_ \frac}\right |^2 \delta (E_i - E_f + \hbar \omega_k - \hbar \omega_k^\prime)
It represents the probability of the emission of photons of energy \hbar \omega_k^\prime in the
solid angle d\Omega_ (centred in the k^\prime direction), after the excitation of the system with photons of energy \hbar \omega_k. |i\rangle, |n\rangle, |f\rangle are the initial, intermediate
and final states of the system with energy E_i , E_n , E_f respectively; the delta
function ensures the energy conservation during the whole process. T is the relevant
transition operator. \Gamma_n is the instrinsic linewidth of the intermediate state.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kramers–Heisenberg formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.